================================

THE ESSENTIAL LINUX COMMAND-LINE

================================

An introduction to the Linux console, oriented towards the novice-user

with no prior experience using a command-line environment.

N Deepak. 09 March 2003.

http://www.ndeepak.info/

deepak@despammed.com

This document is in ASCII text, in order to make it readily accessible

from any text editor. It is intended to be read after viewing the

presentation introducing you to the Linux operating system. A very

basic (essential) coverage of the vi and emacs text editors can be

found in the file 4viemacs.txt.

This document is distributed under the GNU Free Documentation Licence.

FILES IN THIS PRIMER

====================

01. bash! --------- Introduction to the Linux command-line

02. Lonely Shell -- Commandeering your Linux system

03. Yes, Master --- (Helpful) advanced topics

04. C-x C-c :q! --- Appendix: Essential vi and emacs

--

BASH! INTRODUCTION TO THE LINUX COMMAND-LINE

==

Many people are scared of commands. They think it is a geekish way of

accomplishing things, if not archaic. Let me clear this misconception

first: even if you use a graphical interface, it ultimately boils down

to a command. When you click on a directory's icon in a file-browser, it

is a command for the application to list out the directory's contents

(as icons, perhaps). The menus offer a hassle-free way of

interacting with a system, only because you do not need to memorise the

commands. You just click on a menu-item, and the system considers it as

a command: so your work is done.

 Ah, if things were always so easy. If you have ever experienced a

situation in which Windows will refuse to boot and you are stuck with

DOS, you will understand what I am trying to say. Even though GUIs

exist, it does not mean that you can forego learning commands. Many a

time, commands accomplish a task much faster. They are also less

resource-hungry compared to their graphical equivalents. They tend to

have fewer bugs, and are sometimes inevitable.

 So it is much better to know a few commands, isn't it? I give below

some important commands and are worth learning. I don't make any attempt

to make any command comprehensive: that is left to their manuals.

Neither do I list each and every command; only the most important and

useful are covered. The point kept in mind while considering every

command is this: does it help for an average user to know this command?

Will it make his experience in using Linux any better?

 Let's begin our sojourn, then. In this file, I introduce you to the

Linux command-line, and also talk about several miscellaneous points

you need to know before you can start trying out commands.

CONTENTS

========

o The shell

o Some things Windows users need to know

 + Mounting / unmounting

 - Making a DOS/Windows partition visible in Linux

 + Front-slash or back-slash?

 + Executing a file in the current directory

 + User and super-user

o Important directories in Linux

o Miscellaneous notes

 + * and ? -- Two important wildcards

 + Short-cuts to directories

 + Three useful tips

o Caveats

o Elementary troubleshooting

THE SHELL

=========

Commands are entered at a 'prompt'. A typical Linux prompt looks this

way:

[foo@host foo]$ _

The x@y signifies that this console is being used by user x, and the

host-name is y. The second word is the current working directory, in

this case /home/foo, which is the default 'home' directory for a

user foo in Linux. Hereafter I will simply use the '$ _' combination to

signify a prompt.

 The cursor blinks and waits for you to enter a command. The prompt

is issued by a special program called the 'shell'. The shell is a kind

of filter. It reads your commands, modifies them if necessary, and then

calls the respective program. Some commands are executed by the shell

itself. There are many shells for the UNIX environment, and bash is the

standard shell for Linux. At this stage you need not know anything

more, so let us move on.

SOME THINGS WINDOWS USERS NEED TO KNOW

======================================

MOUNTING/UNMOUNTING

This is a frequently asked question. What does 'mount' mean anyway?

 In DOS, a floppy-drive is A:, a CD-ROM drive is E: or F: or some

other letter, and so on. UNIX does not assign any letter to a

peripheral, and instead gives them a place in its root (/) filesystem.

 Let me elaborate. Suppose you want to use a floppy. You insert it

into the drive, and then 'mount' the floppy onto a directory by

entering this command at the prompt:

mount /dev/fd0 /mnt/floppy

You then go to /mnt/floppy directory, and if you give the ls command,

you will see the floppy's contents. (In most Linux distributions, the

/dev/fd0 parameter can be omitted. mount will look for it by default.)

 For all practical purposes, /mnt/floppy denotes your floppy:

you can move, copy, and even delete files from /mnt/floppy: the changes

will be reflected in the actual floppy disk. After finishing your work,

you say:

umount /mnt/floppy

 Now you have 'detached' the floppy from the system. Give an ls to

verify. The same idea applies to other devices and filesystems, such as

your CD-ROM drive, Windows FAT32 filesystem, and so on.

 You might ask, why such a round-about way? It is such an irksome

method! The technical reason is security. mount command is the only way

you can gain access to the contents of a peripheral or another

filesystem, so if that is disabled to a user, we have secured our

system to some extent, right? (I told you Linux can run a server.

Servers definitely cannot run an insecure operating system such as

Windows 95 or MacOS. DOS doesn't even come into picture.)

MAKING A DOS/WINDOWS PARTITION VISIBLE IN LINUX

As a by-the-way tip, I am also including the commands to mount a DOS

/ Windows drive in Linux. _Usually_ your C drive will be /dev/hda1, D

drive will be /dev/hda5, E will /dev/hda6 and so on. If you ask what

happened to /dev/hda2 to /dev/hda4, well, they are reserved for primary

partitions. Never mind. Here is how to make your Windows partitions

visible:

$ su

Password: (Enter root's password. It is not displayed on-screen.)

mkdir /mnt/winc /mnt/wind
These are the 'mount-points'

mount /dev/hda1 /mnt/winc
Now your C-drive is /mnt/winc

mount /dev/hda5 /mnt/wind # Your D-drive is /mnt/wind and so on.

exit

$ _

 Note, however, that you have to remount the partitions every time

you reboot your system. If you want them to be automatically mounted

every time, you have to make entries in the file /etc/fstab. Here are

sample entries for C, D and E drives.

C drive:

/dev/hda1 /mnt/winc vfat defaults 0 0

D drive:

/dev/hda5 /mnt/wind vfat defaults 0 0

E drive:

/dev/hda6 /mnt/wine vfat defaults 0 0

and so on. Also, if the hard-drive is a primary slave, replace hda with

hdb. If it is secondary master, you have to say hdc, and finally, if it

is a secondary slave, it is named hdd. As a note of warning, /etc/fstab

is a very important file. Don't play with it. Be careful.

FRONT-SLASH OR BACK-SLASH?

Before you actually try out the commands, a line of warning: in UNIX,

directories are separated by the front-slash (/), not the backslash (\)

as in DOS and Windows. So you say:

cd /home/tomh

and NOT

cd \home\tomh

 The backslash has a special use in UNIX/Linux, namely to 'escape'

the special meaning of the character which follows it. Don't worry, just

remember to use the front-slash, and not the back-slash.

EXECUTING A FILE IN THE CURRENT DIRECTORY

By default, most Linux versions do not search the current directory

when you type the name of an executable. For example, let's say you are

in DOS, and you have a file in C:\MYDIR, with the name GAME.EXE. Then

you can simply say:

C:\MYDIR>GAME

The binary will be executed.

 Now let's suppose you are in Linux, and in /home/tomh/mydir

directory, with an executable game (executables need not have any

extensions in UNIX). Try saying game:

$ game

bash: game: Command not found

$ _

 The trick is, you have to specifically execute from the current

directory:

$./game

 Don't be unnerved. '.' always signifies current directory, and '..'

always parent directory, both in Linux and DOS. This roundabout method

is implemented in order to prevent accidental execution of probably

harmful binaries in the current directory.

USER AND SUPER-USER

In network operating systems like Linux and Windows NT, a few users

have special powers. They are called Administrators in NT and 'root' in

UNIX/Linux. They can execute commands which ordinary users cannot, and

hence they are called super-users. In Linux, the default login-name for

the super-user is 'root'. If you log in with the id root (and with

root's password), then you have logged in as a super-user.

IMPORTANT DIRECTORIES IN LINUX

==============================

Before you start commanding, you should know what directories exist in

Linux, and why they exist. I obviously cannot explain each and every

directory, so I give here a short list of the most important directories

and what they house.

/ The 'root' directory; reference point for all directories.

/bin Binaries which are absolutely essential to run Linux.

/boot All the files required for booting Linux on a system.

/dev All the devices have their corresponding files here.

/etc All the configuration files for the various software are stored

 here. Don't play with this directory.

/home All users will have their 'My Documents' under this directory.

 If your id is tomh, your 'My Documents' (called home-directory)

 is /home/tomh.

/lib The libraries required by system-applications. (Just like DLLs

 in Windows.)

/lost+found When a disk-check finds files which are damaged or which

 are not linked to any directory, they are recovered to this

 directory. Such damages are almost always due to incorrect

 shutdown.

/misc Miscellaneous files!

/mnt The directory where peripherals and other file-systems are

 mounted.

/opt The directory where optional software are installed.

/proc proc houses a pseudo-filesystem. Its contents really do not

 exist anywhere on the disk, and are made available only when you

 cd to this directory and look at some file. Don't worry about

 it, anyway.

/root The home-directory for the super-user: root.

/sbin The system-administration binaries exist here.

/tmp The directory where temporary files are created and stored.

/usr Everything related to users!

 /usr/bin /bin houses critical binaries, whereas /usr/bin stores

 other binaries: not so critical but required

 nevertheless.

 /usr/include The header-files required by programs for

 compilation.

 /usr/lib The libraries required by user-applications.

 /usr/local Files peculiar to this particular machine.

 /usr/sbin User-administration binaries.

 /usr/share Information that can be shared by most users.

 /usr/src The source-code for the Linux kernel.

 /usr/X11R6 Files needed by the X Window system.

/var Files whose contents vary frequently are in this directory.

 /var/log The log-files of the system.

 /var/spool Directories for mail, news, printing and other queued

 work.

SOME MISCELLANEOUS NOTES BEFORE YOU CAN START CHECKING OUT COMMANDS

===

* AND ?: TWO IMPORTANT WILD-CARDS

When using the command-line, you will be making use of the '*' and the

'?' characters quite often. If you are new to these symbols, here are

their meanings. If you have already used them, you can skip this.

* means 'match any number of characters'. For example, chap* matches:

chap01, chapa, chap_end, and also chap. Similarly, *er matches wonder,

maker, goner, der, and even er. If you just give * (nothing else), it

matches every file.

? means 'match one character'. For example, chap? matches:

chapa and chap1, but _not_ chap01 and chapab.

SHORT-CUTS TO DIRECTORIES

Whenever you have to give a directory name, you may find these shortcuts

useful:

. indicates current directory.

.. indicates parent directory.

~ indicates home directory.

THREE USEFUL TIPS

I.

If the output of a command scrolls too fast and you missed

something, press SHIFT+PAGEUP key to scroll back up.

II.

You need not type the full name of a file or a command: the TAB key

has an autocomplete feature in bash.

 For example, let's say you have a file one_awefully_long_name_file

in your home directory, and want to look at its contents. You can say:

$ cat one[TAB]

 Bingo, the file name will be completed, provided no other file has

its name starting from 'one'. This tip can be applied any time you have

to enter a file-name or path-name at the command-prompt.

 Similarly, you can also autocomplete commands also:

$ Xc[TAB]

will automatically insert:

$ Xconfigurator

 As if that were not enough, pressing TAB twice will list all the

files/commands starting with that pattern. Try these:

$ cat a[TAB][TAB]

$ X[TAB][TAB]

III.

You can work in multiple terminals, running KDE in one and pure

console on another. Press CTRL+ALT+F2. See the login prompt? Usually

there will be six such virtual terminals. You can be using all of them.

Press CTRL+ALT+F-keys to switch. CTRL+ALT+F7 returns you to X if you

were originally using X Window like KDE/GNOME.

CAVEATS

=======

o The Linux rm command (to remove a file) permanently deletes a file.

There is no recycle bin.

o The Linux commands to create, copy, move and rename files overwrite

existing files. They don't ask you for confirmation.

o Most Linux commands do not needlessly clutter the screen. For example,

if you compare two files and there are no differences found, you simply

get back the prompt. Unlike DOS, you don't see 'No differences found'.

o Since a super-user has enormous powers, never work under Linux as a

super-user. Always create an ordinary account for yourself (the command

is: useradd id_name), set its password (command is: passwd id_name), and

work under this account. Reserve super-user log-in only for

administrative tasks.

o Just like Windows, you should not shut down Linux by simply pressing

the POWER button on your PC cabinet. It will seriously harm the

file-system. Always use the halt or shutdown command.

ELEMENTARY TROUBLESHOOTING

==========================

If a command causes an error message like the one below:

bash: <command>: Command not found

then try these steps:

1. Did you type it all right?

2. Check whether the executable for the command has been installed with

the 'whereis' command. As an example, let us apply whereis for useradd:

$ whereis useradd

useradd: /usr/sbin/useradd /usr/share/man/man8/useradd.8.gz

$ _

 So the command is present, but in a different directory. You can

execute this command by typing:

/usr/sbin/useradd

3. If step 2 results in no entries, then you must install the package.

Insert the Linux CD, and install the package with the 'rpm -i'

command. Note that this command requires you to be a super-user.

If a command doesn't work the way you want it, then try these steps:

1. Have you given the correct arguments (the words you type after the

name of the command) to the command?

2. Did you type them all right?

3. Some commands don't work for ordinary users. The useradd command

above can be executed only by super-user. It makes no sense if everybody

could add users, would it?

You can press CTRL-c at any time in order to abort the execution of the

current command. Press CTRL-u if you made too many typos.

This file covered the basics of the Linux command-line environment, and

has armed you with enough competence to start trying the commands. The

next file will list the important commands, so that you can actually

experiment and learn.

================================

THE ESSENTIAL LINUX COMMAND-LINE

================================

An introduction to the Linux console, oriented towards the novice-user

with no prior experience using a command-line environment.

N Deepak. 09 March 2003.

http://www.ndeepak.info/

deepak@despammed.com

This document is in ASCII text, in order to make it readily accessible

from any text editor. It is intended to be read after viewing the

presentation introducing you to the Linux operating system. A very

basic (essential) coverage of the vi and emacs text editors can be

found in the file 4viemacs.txt.

This document is distributed under the GNU Free Documentation Licence.

FILES IN THIS PRIMER

====================

01. bash! --------- Introduction to the Linux command-line

02. Lonely Shell -- Commandeering your Linux system

03. Yes, Master --- (Helpful) advanced topics

04. C-x C-c :q! --- Appendix: Essential vi and emacs

LONELY SHELL: COMMANDEERING YOUR LINUX SYSTEM

===

Now that you have been introduced to the shell, this file lists the

commands you need to know as a user of Linux. I have arranged the

commands in a task-oriented manner so that the learning process might

be easier. Go ahead and type them out!

REFERENCES USED

===============

I have organised the commands below in the same way as in the book

'Linux Command Instant Reference' published by Sybex Inc., USA. (ISBN:

0-7821-2748-7)

 I have also used the book 'UNIX Concepts & Applications', 2/Ed, by

Sumitabha Das, published by Tata-McGraw Hill, Delhi, India. (ISBN:

0-07-463090-3)

 'The Linux System Administrators' Guide' by Lars Wirzenius

and Joanna Oja, v0.6.2, part of the Linux Documentation Project, was

also very helpful.

 Many thanks to Karl O. Pinc for his valuable suggestions in

 improving this primer. Thanks also to Swetha for her comments

 and contributions.

CONTENTS

========

o Logging in and managing sessions

o Getting help and information in Linux

o Finding and killing processes

o Navigating the file-system and finding files

o Managing files and directories

o Archiving, compressing and extracting files

o Working with text files

o Working with multimedia

o Managing your disks

o Configuring and managing your system

Particulary important commands are marked with an asterisk.

Logging In and Managing Sessions

================================

*How do I change my password? passwd

*How do I log out of the system? exit

*How do I shut down my computer? halt

*How do I reboot my computer? reboot

*How do I get into the graphical interface? startx

How do I gain superuser privileges without logging out? su -l

 (You will be prompted for the root password.)

The GUI doesn't seem to work. How to configure? xf86config

Getting Help and Information in Linux

=====================================

How do I display or print a calendar? cal

 o Displaying the calendar for year 1492 AD: cal 1492

 o Displaying the calendar for July, 1776 AD: cal 7 1776

How do I see the current system date and time? date

How do I get information on other users? w

*How do I find out what a basic shell command does, say cd?

 help cd

How do I find out my user and group names and IDs? whoami

*How do I get a one-line help on a command, say grep? whatis grep

*How do I get information about GNU utilities, say emacs? info emacs

*How do I learn what a command can do, say for cdrecord? man cdrecord

*How do I find out my current directory? pwd

How do I find out information about my Linux? uname -a

 (The -a is an option: it tells uname to output All the information.)

How do I find out how long my system is up? uptime

@@@@@

I suggest you look up documentation for:

w: man w

info: info info

man: man man

uname: man uname

@@@@@

Finding and Killing Processes

=============================

*How do I view a list of running processes? ps -A

 (-A means all processes run by All users.)

*How do I terminate a process, say with PID 5076? kill -9 5076

 (Use the ps command to find out the PID of a process.)

 (9 is the 'sure kill' signal.)

How do I know how much RAM is unused? free -m

 (-m outputs data in terms of megabytes)

@@@@@

I suggest you look up man pages for:

ps: man ps

@@@@@

Navigating the Filesystem and Finding Files

===

Note: all commands accept path-names instead of files. For example, if

you are in /home/tomh directory and want to change to mydir

subdirectory, both these commands are equivalent:

$ cd mydir

$ cd /home/tomh/mydir

*How do I change directory, say to mydir under current directory?

 cd mydir

*How do I list the files in the current directory? ls

 o I want to know more than its name ls -l

 The -l (Long) option shows the following data:

 + Permissions assigned to the file/directory

 + Number of links to the file/directory

 + Owner of the file/directory

 + Group to which the file/directory belongs

 + Size of the file in bytes

 + Date/time at which the file was last modified

 + Name of the file

 o I want to list files with names starting with 'chap'

 ls chap*

 o I want to list files in the subdirectories also ls -R chap*

 (-R means recursive)

 o I want to sort the files as per their Size ls -Slh

 (Here we have combined options -S, -l, and -h.)

 o I want to sort files by their modification Time ls -t

 o I want to see hidden files as well ls -a

 (-a means All files.)

 o I want to see file-sizes as B/kB/MB/GB ls -lh

 (-h means Human-readable.)

(Say:

 ls | less

 if the output scrolls too fast. More info on piping in 3adv.txt.)

*How do I find out the type of a file, say test.gz? file test.gz

*How do I find all files changed in the last two hours? find -ctime -2

 (find is discussed in some detail later as an advanced topic.)

*How do I locate the binary for a command, say lilo? whereis lilo

*How do I create a 'shortcut' to 'My Documents' folder in Windows?

 ln -s "/mnt/winc/My Documents" win-mydocs

 (You can now type 'cd win-mydocs' to go to My Documents.)

*How do I quickly locate a file in the filesystem, say log files?

 locate "*.log"

 (If locate says 'Unable to find database file', use the

 updatedb command given below.)

How do I create a database of filenames for quick search?

 updatedb

 (updatedb needs superuser access.)

 (find searches the hard-drive; locate searches a database.)

@@@@@

I suggest you look up documentation for:

ls: man ls

@@@@@

Managing Files and Directories

==============================

Note: all commands accept path-names instead of files. In order to edit

a file, use an easy editor like pico or Joe. Just say:

pico file_name

How do I create an empty file test? > test

 (NOTE: This overwrites 'test' if it exists.)

How do I input text to a file 'test' from command-line? cat > test

 (Press CTRL-d when you are done.)

*How do I make sure my files cannot be read by others? chmod go-r *

 (chmod is covered in some detail later in this document.)

*How do I copy files?

 (NOTE: cp overwrites existing files.)

 o Copy a file test to another file test2 cp test test2

 o Copy a file test to directory mydir cp test mydir

 o Copy test and test2 to directory newdir cp test test2 mydir

 o Copy a directory tree dir1 to dir2 cp -a dir1 dir2

 o Ask before overwriting cp -i test test2

 (-i means interactive.)

 o Force overwriting cp -f test test2

How do I view statistics about a file test? stat test

*How do I create a new directory, say newdir under the current

directory? mkdir newdir

 (You can create multiple directories with a single mkdir.)

How do I remove an empty directory, say newdir in the current

directory? rmdir newdir

 (You can delete multiple directories with a single rmdir.)

*How do I rename a file, say from test to test2? mv test test2

 (NOTE: mv overwrites existing files.)

 o Ask before overwriting mv -i test test2

 o Force overwriting mv -f test test2

*How do I move files?

 (NOTE: mv overwrites existing files.)

 o Move a file test to directory newdir mv test newdir

 o Move test and test2 to directory newdir

 mv test test2 newdir

 o Move a directory tree olddir to newdir

 mv olddir --target-directory=newdir

 o Ask before overwriting test2 mv -i test test2

 o Force overwriting of test2 mv -f test test2

*How do I delete a file, say test? rm test

 (NOTE: Files, once deleted, cannot be recovered.)

 (You can delete multiple files with a single rm.)

*How do I delete a directory tree somedir? rm -rf somedir

 (The -r option specifies recursive delete, -f forces deletion.)

 (NOTE: Use this command with caution.)

How do I find out how many words are in a file foo? wc foo

 (wc gives three data: number of lines, number of words,

 number of characters.)

 (wc accepts multiple files.)

@@@@@

I suggest you look up documentation for:

wc: man wc

@@@@@

Archiving, Compressing and Extracting Files

===

*How do I compress a file huge_file to the maximum extent?

 gzip --best huge_file

 [OR] bzip2 -9 huge_file

 [OR] zip -9 test.zip huge_file

*How do I decompress such a file? gunzip huge_file.gz

 [OR] bunzip2 huge_file.bz2

 [OR] unzip test.zip

*How do I List the files in a compressed file? gzip -l huge_file.gz

 [OR] unzip -l test.zip

How do I view a file in a compressed archive without extracting it?

 zcat huge_file.gz

 [OR] bzcat huge_file.bz2

*How do I Create a new tar archive, named backup.tar, containing files

from the directory imp_dir? tar -cf backup.tar imp_dir

 (-f indicates create a File.)

*How do I Update backup.tar with changed files?

 tar -uf backup.tar imp_dir

*How do I lisT the files present in backup.tar?

 tar -tf backup.tar

*How do I eXtract files from backup.tar?

 tar -xf backup.tar

How do I create a compressed tarball of imp_dir in one shot?

 tar -czf backup.tar.gz imp_dir

 [OR] tar -cjf backup.tar.bz2 imp_dir

@@@@@

I suggest you look up documentation for:

gzip: man gzip

bzip2: man bzip2

zip: man zip

tar: info tar

@@@@@

Working With Text Files

=======================

*How do I view the contents of a file, say test? cat test

*How do I view the contents one page at a time? less test

 ('more test' also does the same job. 'less' is

 better than 'more')

*How do I compare two files test and test2? cmp test test2

*How do I find files containing the word "winner" in the current

directory? grep "winner" *

How do I find files containing the words "foo" or "bar" in the current

directory as well as its subdirectories? egrep -r "foo | bar" *

 (The grep family is discussed in some detail later

 as an advanced topic)

How do I view the first 5 lines of a file test? head -5 test

How do I view the last 5 lines of a file test? tail -5 test

How do I view all the lines from the 5th line? tail +5 test

*How do I check the spelling of a file test? ispell test

How do I sort the lines of a file test in dictionary-order? sort test

 o How do I sort it in Reverse order? sort -r test

 o How do I sort a set of Numbers? sort -n test

How do I print a file test? lpr test

How do I split a file test into 1KB chunks? split -b 1024 test

How do I replace all occurrences of "foo" by "bar" in a file test,

and save the file as test2?

 cat test | tr "foo" "bar" > test2

 (Pipes and redirections are discussed a bit more as

 advanced topics later)

@@@@@

I suggest you look up documentation for:

less: man less

sort: man sort

lpr: man lpr

split: man split

@@@@@

Working With Multimedia

=======================

How do I view an image, say file.jpg? display file.jpg

 (Needs X and ImageMagick package.)

*How do I play an audio CD? cdp

*How do I rip an audio CD into separate .wav files? cdparanoia -B "1-"

*How do I play an mp3, say song.mp3? mpg123 song.mp3 &

 (The & indicates that the song should keep playing in background

 while I do other tasks.)

How do I record the microphone input into a .wav file?

 rec -t wav recording.wav

How do I view a HTML file in the shell? links file.html

 [OR] lynx file.html

@@@@@

I suggest you look up documentation for:

display: man display

cdparanoia: man cdparanoia

rec: man rec

@@@@@

Managing Your Disks

===================

How do I create partitions on my primary master hard disk?

 fdisk /dev/hda

 (fdisk needs superuser access. Replace a with b for

 primary slave, c for secondary master and d for

 secondary slave.)

*How do I find how much space is left on my hard drive? df -h

 (-h means Human-readable output.)

*How do I find out how much space the current directory consumes?

 du -sh

 (-s means Summary, and -h means Human-readable output.)

How do I repair a filesystem which has been mounted read-only? fsck -a

 (If your filesystem is corrupted, Linux mounts it read-only

 and gives you a basic prompt. Run fsck from here.)

 (-a means Automatic repair.)

*How do I mount a floppy disk? mount /mnt/floppy

 (The actual mount-point may vary. For example, Debian

 mounts floppies under /floppy.)

*How do I unmount it? umount /mnt/floppy

*How do I create an emergency Linux boot-up disk?

 /sbin/mkbootdisk --device /dev/fd0 2.4.2-2

 (Replace the 2.4.2-2 with your kernel number, also

 give the proper device file for your floppy drive.

 Use 'uname' to find out the kernel number.)

@@@@@

I suggest you look up man pages for:

fdisk: man fdisk

du: man du

@@@@@

Configuring and Managing Your System

====================================

NOTE1: All the commands below require super-user access.

NOTE2: The package-management commands given below are for Red Hat and

 RH-based systems such as Mandrake. If you use, say Debian, you would

 need to use a simple text-mode graphical tool called 'dselect' to

 manage software.

*How do I add a user tom? useradd tom

*How do I delete a user tom? userdel tom

*How do I change the password for a user tom? passwd tom

*How do I install a package foo-1.0.rpm? rpm -i foo-1.0.rpm

*How do I uninstall a package foo-1.0.rpm? rpm -e foo

*How do I upgrade a package foo-1.0.rpm to foo-1.1.rpm?

 rpm -U foo-1.1.rpm

How do I list the files of a package foo-1.0.rpm? rpm -ql foo

How do I get information on a package foo-1.0.rpm? rpm -qi foo

How do I find out the package to which a file, say /bin/ls, belongs?

 rpm -qf /bin/ls

I suggest you look up man pages for:

rpm: man rpm

Well, that's it! Those are the only commands you really need to know as

a desktop user. There are many more, but you don't need to learn them

for most tasks you do daily. Whoever said that in order to learn

Linux commands you have to buy that 1000-page book?

 Take your own time in learning and understanding the commands.

Gradually your mind will begin to enter the right command for the right

job. Once you are confident, you can take up the advanced material in

the next file.

================================

THE ESSENTIAL LINUX COMMAND-LINE

================================

An introduction to the Linux console, oriented towards the novice-user

with no prior experience using a command-line environment.

N Deepak. 05 August 2002.

http://www.ndeepak.info/

deepak@despammed.com

This document is in ASCII text, in order to make it readily accessible

from any text editor. It is intended to be read after viewing the

presentation introducing you to the Linux operating system. A very

basic (essential) coverage of the vi and emacs text editors can be

found in the file 4viemacs.txt.

This document is distributed under the GNU Free Documentation Licence.

FILES IN THIS PRIMER

====================

01. bash! --------- Introduction to the Linux command-line

02. Lonely Shell -- Commandeering your Linux system

03. Yes, Master --- (Helpful) advanced topics

04. C-x C-c :q! --- Appendix: Essential vi and emacs

YES, MASTER: (HELPFUL) ADVANCED TOPICS

======================================

I now proceed to give you some more advanced topics, but I have

tried my best to make them easy to understand for even a beginner.

There is also a brief explanation on how to use three commands which

I thought were too complex for any beginner. They only serve to

improve your productivity with the command-line.

 Read this file after you are comfortable with the Linux shell and its

behaviour with respect to commands listed in the previous file.

CONTENTS

========

o Background, foreground, running, stopping

o Three important but somewhat difficult commands

 + find

 + chmod

 + grep

o A crash-course on redirection and piping

 + Input-redirection

 + Output-redirection

 + Error-redirection

 + Piping

BACKGROUND, FOREGROUND, RUNNING, STOPPING

===

Unlike DOS, you can run multiple commands in Linux at the same time.

Let's say you have a huge file to be sorted. Terminate the sort command

with the ampersand (&) symbol. The shell will execute it in the

background:

$ sort huge_file &

[1] 962

$ _

962 is the PID (process ID) of your job. It is executed in the

background, and the prompt is returned immediately.

 If a process is executing for too long, and you didn't set it to run

as a background process, here is how to get back the prompt and set this

process to run in background.

1. Press CTRL-z to stop the executing process.

2. You will get the prompt. Now type bg and press ENTER.

3. The process will be executed in the background, and you will get back

the prompt for other work.

4. If at any time you want this to continue to execute in the

foreground, press fg at the prompt and press ENTER.

THREE IMPORTANT (BUT SOMEWHAT DIFFICULT) COMMANDS

===

I now give additional coverage to some commands. You can read this

section at leisure, since it is somewhat terse compared to other

sections.

find

find is a very versatile command, with no equivalent in DOS. You can

use 'find' to search for files using a variety of search-conditions,

and hen perform many actions for the results.

find has this syntax: find <path(s)> <search-condition(s)> <action>

Some examples will show you how you can use 'find' to make your life

easy:

 How do I find a file with the name fstab?

 find / -name fstab

 Note: / indicates that find should search all the directories.

 -name indicates that it should search for a file with name

 fstab. The default action is to output on-screen, so we can

 leave this.

 How do I find files with extension mp3?

 find / -name "*.mp3"

 Note: Don't forget the quotes. Otherwise the shell will expand

 *.mp3 to all the files with mp3 extension in your current

 directory and you will end up getting useless results.

 How do I find which files in my home directory were changed in the

 past two days?

 find ~ -mtime -2

 Note: Here the search-condition is modification time: -mtime.

 You can also give +2 if you want to look at files _not_

 modified in the last two days.

 How do I find files accessed in the last 2 hours?

 find ~ -amin -120

 Note: -amin denotes access in minute-interval. You can also use

 mmin similarly. As before, +120 denotes files which were not

 accessed in the past 2 hours.

 How do I find files with size greater than 1 MB?

 find / -size +1024

 Note: -size indicates file-size. Again, -1024 outputs files with

 size less than 1 MB. You can also find files greater than 1 MB

 but less than 2 MB:

 find / -size +1024 -size -2048

 How do I find files in the current directory newer than a file

 'test'?

 find . -newer test

 Note: -newer indicates that find should look for files newer

 than the file 'test'.

 How do I find files with tmp extension and delete them with

 confirmation?

 find / -name "*.tmp" -ok rm {} \;

 Note: Firstly, don't get carried away by the terseness of the

 command above. -ok is an action, and this is the first

 instance in which we are specifically asking find to take this

 action. -ok indicates that the command following it must be

 executed with confirmation every time. In our case, find will

 ask you for confirmation every time it uses rm to delete a

 file. The "{} \;" are simply required as a rule. They have no

 meaning otherwise.

 How do I delete all files in the /tmp directory older than a month?

 find /tmp -mtime +30 -exec rm -f {} \;

 Note: -exec is similar to -ok, but this time no confirmation is

 asked. The files are silently deleted.

chmod

chmod is another very important command used to change permissions for

your files and directories. It is another typical example of the cryptic

UNIX commands, a brother of 'find', so to say. I will try to simplify it

as much as possible.

 Firstly, permissions are of three types:

 r: read permission

 w: write permission

 x: execute permission

 These permissions can be assigned to three 'domains':

 u: owner

 g: group

 o: others

Create a file and check its default permissions:

$ > test

$ ls -l test

-rw-rw-r-- 1 deepak deepak 0 Feb 19 13:11 test

$ _

Now I will explain what the string at the beginning means. Let's make

things easier by dividing it into groups:

- rw- rw- r--

The first '-' indicates it is an ordinary file. There are three triplets

after this.

 The first triplet shows the permissions for the owner.

 The second triplet shows the permissions for the group.

 The third triplet shows the permissions for others.

So we find that by default, the owner and the group can read and write

(rw-) to the file, but cannot execute it. Others can only read (r--) the

file, but cannot write to it or execute it.

 Now I shall give you several examples of using chmod to change

permissions:

 How do I make 'test' executable by everybody?

 chmod ugo+x test

 NOTE: Here we are adding ('+') execute-permission (x) to owner,

 group and others (ugo).

 How do I remove write-permission to group?

 chmod g-w test

 NOTE: Here we are removing ('-') write-permission (w) to the

 group (g).

 How do I remove all permissions to everybody except myself?

 chmod go-rwx test

 NOTE: Here we are removing ('-') read/write/execute permissions

 (rwx) to group (g) as well as others (o).

 How do I make 'test' read-only to everybody?

 chmod ugo+r-wx test

 NOTE: Here we are adding ('+') read-permission (r) to everybody

 (ugo), and removing ('-') write/execute permissions (wx) to

 everybody (ugo).

Here is how to use chmod to secure your directories:

 r permission gives someone access to read the contents of a

directory.

 w permission enables someone to add files to a directory or remove

files from it.

 x permission enables someone to change to that directory.

See the default permissions:

$ mkdir newdir

$ ls -ld newdir

drwxrwxr-x 2 deepak deepak 1024 Feb 19 13:25 newdir

$ _

Separating into groups: d rwx rwx r-x

what do we deduce?

 d indicates this is a directory,

 the owner as well as his group can read/write/execute the directory,

 others can read the contents of the directory as well as go to that

 directory, but cannot add files to it or delete files from it.

Check out these examples:

 How do I disable group-members from adding/removing files from

newdir?

 chmod g-w newdir

 How do I disable group as well as others from changing to newdir?

 chmod go-x newdir

 Never give write-permission to a directory to 'others', because that

will enable them to delete files from the directory, even if they are

read-only!

Play around with chmod until you think you are comfortable with it!

grep Family

grep is the last command I am going to discuss here. grep stands for

'get regular expression'. You can use grep if you want to look for files

which contain a specific pattern. grep has been further extended by

commands like egrep and fgrep.

grep has this syntax: grep <options> <search-pattern> <file(s)>

Grep displays the line(s) which contains the pattern in each of the

files. As before, I will use examples to tell you about grep and its

extensions.

 How do I find all occurrences of 'linux' in all files of the current

 directory?

 grep linux *

 How do I find all occurrences of Linus Torvalds in .txt files of the

 current directory as well as its subdirectories?

 grep -r "Linus Torvalds" *.txt

 NOTE: Use double-quotes (or single-quotes) to search for

 multi-word patterns like the one above.

 You can also say:

 find . -type f -exec grep doc {} \;

 How do I ask grep to ignore case (upper/lower) during

 pattern-matching?

 grep -i linux *

 How do I also print the matching line-numbers?

 grep -in linux *

 NOTE: Here we ignore case, as well as print numbers (n).

 I just want to know the files which contain the pattern.

 grep -il linux *

 NOTE: This only displays the names of the files which match.

 How can I search for both Linux and Torvalds?

 egrep 'Linux|Torvalds' *

 NOTE: '|' indicates an 'or' relationship.

 How do I list regular files with the pattern 'doc' in their names?

 find . -type f | grep doc [OR]

 Can I use wild-cards? Sure you can, but they don't mean the same as

they do in the command prompt. Look up the man page for grep for further

information, under the section 'Regular Expressions'. It is usually

unnecessary to master them all, but sometimes they can make a task a

whole lot simpler!

--

A CRASH-COURSE ON REDIRECTION AND PIPING

==

Redirection and piping are two powerful concepts in UNIX. They are so

useful that even DOS has borrowed them.

 I am going to give you a fast-track introduction to redirection and

piping, so that you can make use of them to simplify your tasks. It is

not necessary for you to know this, but if you do, then it is not going

to be a waste. Since this topic is also somewhat advanced, you can read

this at leisure.

 Commands take an input, process it, and give an output. The input

can come from a file or from an input 'stream', usually the keyboard.

They output their results onto an output 'stream', usually the monitor.

They may also generate error messages, which are sent to an error

'stream', again the monitor in most cases.

 Thus we have three 'streams':

 * The input stream, stdin

 * The output stream, stdout

 * The error stream, stderr

INPUT REDIRECTION

Redirection comes into picture when we manipulate the input and/or

output streams from their default devices. Let me make this clear.

Keyboard is the default input device, right? And what does the keyboard

do? Give some characters to the command. How about taking these

characters from a file? This simple concept is called input direction.

See this example:

 If you don't specify any files, wc command takes its input from

stdin, the standard input device. Hence, if you type wc and press ENTER,

wc waits for you type something and then press CTRL-d to terminate your

input. As soon as you have signalled termination, it will output

statistics on your text. See this sample session:

$ wc

This is some

sample text over

multiple lines.

^d

 3 8 46

$ _

 What happened here is that the command took its input from stdin,

which is the keyboard by default. Now, let us override this default by

specifying a file as the input device. We will type the same text onto

test and then run the command as below.

$ wc < test

 3 8 46

$ _

Great! This is the power of UNIX. The command wc doesn't know where its

input came from. The shell saw the left-chevron (<) and understood that

there was an input-direction. Hence it opened the file test and directed

its characters to wc. In plain words, the file became the stdin, instead

of the keyboard. That is, we _redirected_ the input stream.

 To see for yourself the truth in my statement 'The command doesn't

know where its input came from', observe the sequence below:

$ wc test

 3 8 46 test

$ wc < test

 3 8 46

$ _

OUTPUT REDIRECTION

Output redirection is also very similar to input redirection. Instead of

outputting to the terminal which is the default output device, we ask

the shell to redirect it to a file. The command itself doesn't know

where its output is headed.

 An example can make things clear. Consider this session:

$ sort data_file

... sorted output is seen ...

$ _

 Now let us redirect this to a file:

$ sort data_file > sorted_file

$ _

 Amazing! Again, the shell saw the right-chevron and saw that there

was an output-redirection. Hence instead of outputting to the default

output device (the terminal), it sent the output to the file

sorted_file. There is no output at the terminal at all!

ERROR REDIRECTION

Let's say you are trying to open a non-existent file.

$ cat nofile

cat: nofile: No such file or directory

$ _

Now let's try redirecting this to a file err_file

$ cat nofile > err_file

cat: nofile: No such file or directory

$ cat err_file

$ _

 What happened? err_file was created by the shell, but nofile had

nothing to send to it. And why not? Because nofile didn't exist. But cat

did output something on the screen! Yes, that was the error-message

directed to the default stderr device, which is also the terminal. Now

try this:

$ cat nofile 2> err_file

$ cat err_file

cat: nofile: No such file or directory

$ _

 It worked! 2 is called the 'file descriptor' for stderr. The file

descriptors for stdin and stdout are 0 and 1 respectively.

PIPING

Piping is the concept of redirecting the output of a command as the

input to another command. This is another very useful feature. A pipe is

formed by the '|' symbol as follows:

cmd1 | cmd2

The output of cmd1 will serve as the input to cmd2. The pipeline can

consist of many stages:

cmd1 | cmd2 | ... | cmdn

Technically, in a pipeline, the standard-output of one command becomes

the standard-input of the next command.

 Here are some examples to make this concept clear:

 How do I prevent the output of a command from scrolling?

 grep "some common pattern" * | less

 NOTE: less is the paginator which waits for keyboard-input once

 a screen is full. The shell sends the output of grep to the

 less command, which outputs data one-screen at a time.

 How do I list all the packages installed in my system, sorted?

 rpm -qa | sort

 NOTE: Here the output of the rpm command is fed to the sort

 command. If we want this output to be put in a file, say,

 sorted_pkglist, then we can say:

 rpm -qa | sort > sorted_pkglist

 See the power of redirection and piping?

 How do I display a count of the number of files and directories in

 the current directory?

 ls | wc -l

 NOTE: The shell sends the output of ls to wc. wc counts the

 number of lines (due to the -l option), and tells you the

 number of files/directories in the current directory.

 How do I find the 5 largest files in the current directory?

 ls -S | head -5

 NOTE: ls -S sorts files by size. head takes the topmost five

 lines from this output, and shows you the 5 top hoggers.

 An application has frozen. How do I find its PID to kill it?

 ps -A | grep "crashed_app"

 How do I list only the directories in the current directory?

 ls -l | grep "^d"

 NOTE: ^d means d at the beginning of the line.

 Alternatively:

 ls -F | grep "/$"

 (/$ means list entries with a / at the end.)

 If output scrolls too fast, pipe it to more:

 ls -F | grep "/$" | more

We have come to the end of this document introducing you to the most

basic commands at the Linux console, and how to make the most out of it.

I hope I have done a fair job of it, and you have an idea of what you

can achieve with Linux.

 After practising these commands, it would be a good idea to buy some

book on Linux and further polish your Linux skills. As you learn more

and more, you will discover that you are really enjoying working with

Linux. You will realise that the joy derived from this is something that

DOS or Windows can never provide.

================================

THE ESSENTIAL LINUX COMMAND-LINE

================================

An introduction to the Linux console, oriented towards the novice-user

with no prior experience using a command-line environment.

N Deepak. 05 August 2002.

http://www.ndeepak.info/

deepak@despammed.com

This document is in ASCII text, in order to make it readily accessible

from any text editor. It is intended to be read after viewing the

presentation introducing you to the Linux operating system. A very

basic (essential) coverage of the vi and emacs text editors can be

found in the file 4viemacs.txt.

This document is distributed under the GNU Free Documentation Licence.

FILES IN THIS PRIMER

====================

01. bash! --------- Introduction to the Linux command-line

02. Lonely Shell -- Commandeering your Linux system

03. Yes, Master --- (Helpful) advanced topics

04. C-x C-c :q! --- Appendix: Essential vi and emacs

--

APPENDIX: THE ESSENTIAL vi AND emacs EDITORS

==

When I first wrote this command-line tutorial for Linux, it just had a

listing of important commands with an example each. Thus it stayed for

a few months, when I decided to put in some introductory material as

well as advanced topics. This increased the file-size enormously, but I

still managed to maintain the tutorial as a single file.

 And now, as I sit again to revamp the tutorial, I have decided to

split into different files, for two reasons:

a) The new appendix which you are reading,

b) The logical separation of the three sections of the original single

file.

 I never intended to write about editors in my tutorial, since it

was only to give you an understanding of the commands. I had clearly

stated this in the previous version.

 But on second thoughts I found that it would be much better if I

also introduced the user to an editor, in addition to the commands.

After all, much of the work at the console either involves the shell

or the editor. The two are very intimately related. And it is exactly

here that most new users of UNIX get confused. The cryptic interfaces

of most editors, including vi and emacs, are enough to scare them

away, their feature-richness notwithstanding.

 Having decided to introduce an editor, I had to choose one. At

first I wrote only about vi, since it is universally present on all

UNIX systems. But GNU/emacs is another editor which also has almost a

cult following, especially among the users of Linux operating system.

So I have added some introduction to emacs as well.

 It's entirely up to you to use vi or emacs. I have used both, and

I like both. It is usually enough if you are good at one editor, with

a working knowledge of the other. Learning emacs has the additional

advantage that you can use many commands with any other application

which uses the GNU readline utility.

 Note that I have made no attempt to try to help you master either

vi or emacs. I have given only the basic commands for the most

important editing tasks, and there I have stopped. This is commmon to

all the files in this primer; I give only enough detail as is

necessary for an ordinary user.

THE ESSENTIAL vi EDITOR

=======================

CONTENTS

========

o Running and quitting vi

o Typing text and saving file in vi

o Cutting, copying and pasting in vi

o Searching in vi

o Navigating in vi

RUNNING AND QUITTING vi

=======================

To type a new file 'test' under vi, or open an existing file 'test'

under vi, you invoke the vi editor with the command:

$ vi test

($ is the prompt as usual.)

This will create an empty screen, with each line marked by a tilde

('~') and the last line displaying:

"test" [New File]

Welcome to vi. It has no cascading menus nor splashy dialogue-boxes,

yet it is the standard editor on UNIX systems, available since past 25+

years. Right now, we shall not do anything under it, so we shall quit.

Type:

:q [ENTER]

That is, press the colon (':') key. The colon will appear at the

bottommost line of the screen. Now press the 'q' key, and hit [ENTER].

Note that vi is case-sensitive -- ':Q' won't do. If you did the

exercise well, you will return back to the shell.

NOTE:

If you just typed 'vi':

$ vi

you will most probably see a welcome screen. To open 'test', type:

:e test [ENTER]

TYPING TEXT AND SAVING FILE IN vi

=================================

Once again, load vi with a file test.

$ vi test

Now if you start typing, you may either see the characters on-screen,

or you might see vi behaving 'erratically', depending on what

characters you pressed. This is because vi has three modes of

operation, and by default you are placed in what is called 'command

mode'. In this mode, the keys you press are understood by vi as

commands for editing text.

Now press the 'I' key. You are taken to the second mode, called the

Insert mode. The bottom line says, '--INSERT--'. In the insert mode,

you can type text. Go ahead, type some text. Also experiment with

ENTER, DEL, BACKSPACE, HOME, END, PAGE-UP, PAGE-DOWN, and the ARROW

keys. They work under most vi editors of today.

When you are done typing the text, press ESC to return back to the

command-mode. Now type ':q' [ENTER]. You will see a cryptic message:

No write since last change (use ! to override)

This is vi-ese of telling you that you have not saved your text. To

save your text, type:

:w [ENTER]

To save your text under a different file-name, say test2, type:

:w test2 [ENTER]

To save your text as well as quit vi, type:

:wq [ENTER]

To abandon the changes you have made to the file and quit vi, type:

:q! [ENTER]

(Now look at the message and see if you can make out anything.)

Before we move on, it is time to tell you about the third mode. You

have already used it, and it is called the Ex mode. Ex-mode commands

are preceded by the ':' key, and they show up at the last line of the

screen. w, wq, and q are all ex-mode commands.

CUTTING, COPYING AND PASTING IN vi

==================================

Until now we have learnt how to open a file in vi, type some text into

it, save the file, and quit vi. Now let us see how you can cut / copy /

paste text in vi.

Load a text file test in vi:

$ vi test

You are placed in the command-mode. If you are in the Insert mode,

press ESC to return to the command-mode.

To cut 5 lines of text, press:

5dd

What you type is not seen on the screen, but don't worry. Type it. 5

lines will be deleted and placed in the clipboard, and the bottom line

will say:

5 lines fewer

Similarly you can type dd to cut 1 line, 10dd to cut 10 lines, 100dd to

cut 100 lines of text.

 Now let us try pasting this text. Move to a convenient area. If you

want the lines to be pasted starting below the current line, press:

p (lower-case 'P')

If you want the lines to be pasted starting above the current line,

press:

P (upper-case 'P')

 Finally we shall also copy and paste some text. To copy 5 lines of

text, press:

5yy

Again, what you type is not seen. If you did it all right, vi will say:

5 lines yanked

'Yank' is vi-ese for 'copy'. You can similarly try yy, 10yy, 100yy. To

paste the copied text, move to the desired location and use the 'p' and

'P' commands.

SEARCHING IN vi

===============

Searching is very simple in vi. Load a file test in vi:

$ vi test

Now if you want to search for 'hello' in this file, type:

/hello [ENTER]

When you press '/' it will appear in the last line, and your search

string is also displayed. When you press ENTER, vi begins to search in

the forward direction and places the cursor at the first match. If you

want to find the next match, press:

n

You can keep pressing 'n' as an equivalent to 'Find Next' in popular

Windows text editors.

If you want to search in the reverse direction, type:

?hello [ENTER]

Behaviour is same as in forward-direction. Use the 'n' key to 'Find

Previous'.

NAVIGATING IN vi

================

You can use the ARROW-keys, PAGE-UP, PAGE-DOWN, HOME and END keys in

vi. They work in all the latest vi editors. In addition,

* to go to the start of a line, press: 0

* to go to the end of a line, press: $

* to go to a specific line, say line 95, type: :95 [or] 95G

* to go to the next word, press: w

* to go to the previous word, press: b

* to go to the start of file, type: :1 [or] 1G

* to go to the end of file, type: G

All these work in the command mode.

That completes a basic introduction to vi, all that you need to start

working. It is by no means complete, and I wish to warn(!) you that

almost all the keys have some function in vi in the command mode, and

there are numerous commands you can give in the ex mode. But what you

have learnt in this file is enough for most purposes, and that's the

good part about it.

Before I go, here are some more commands which you may find useful:

* To undo last action, type: u

* To delete a line, type: dd (You can also say 5dd to delete 5 lines.)

* To temporarily exit to the shell, type: :sh [ENTER]

To return to vi, type 'exit' in the shell.

**

THE ESSENTIAL emacs EDITING ENVIRONMENT

=======================================

Yes, emacs is not just an editor. It is the Swiss army knife of GNU,

able to do a lot more than mere editing. For instance, you can browse

the Web, look at USENET newsgroups, and even send a mail from within

Emacs. I will only show you how to edit files in it, though. :)

Many thanks to Karl O. Pinc for his contributions and help in writing

this section.

CONTENTS

========

o Running and quitting emacs

o Typing text and saving file in emacs

o Cutting, copying and pasting in emacs

o Searching in emacs

o Navigating in emacs

RUNNING AND QUITTING emacs

==========================

To type a new file 'test' under emacs, or open an existing file 'test'

under emacs, you invoke the emacs editor with the command:

$ emacs test

($ is the prompt as usual.)

You will see an (almost) empty screen, and you can start typing right

away. We shall not do anything for now. To quit, press:

[CTRL]-x

and then:

[CTRL]-c

You will be returned back to the prompt. In Emacs, the CTRL key is

usually abbreviated to 'C'. So the above sequence is written:

C-x C-c

If you just typed emacs and pressed ENTER, you will most probably see

a welcome screen. To open a file, press: C-x C-f, and then type the

file-name. Don't remember it? Just type the directory name and press

ENTER! (Did I say '.' stands for the current directory, and '..' for

the parent directory?)

You can open more than one file in emacs. Use C-x b to switch to a

different file, and C-x C-b to list all the loaded files (called

buffers in emacs). You can see the buffer name at the bottom of the

screen. To maximise a buffer (if you have a split window), use C-x 1.

To close a buffer, press C-x C-k.

Emacs has traditionally taken a while to load, so it is better to

start with just 'emacs' at the prompt, and then open files from within

the editor. Karl has used Emacs for weeks together without ever

shutting it down. 'Having all the files there in the buffers is much

better than looking for them in the disk,' he says.

Note: If you make a mistake while entering a command, or want to break

out in the middle, press C-g.

TYPING TEXT AND SAVING FILE IN emacs

====================================

Emacs doesn't have any modes as in vi. You can type text and be assured

that it isn't interpreted as a command, since emacs commands always

start with the CTRL or META (usually equivalent to ALT) keys.

Once you are done typing the text, you can save the file by saying:

[CTRL-x] [CTRL-s]

or in emacs style, C-x C-s.

To save under a different name, use C-x C-w.

If you do not want to save the file, just say C-x C-c.

CUTTING, COPYING AND PASTING IN emacs

=====================================

Emacs is better than vi when it comes to clipboard operations, since it

is not line-oriented. You just mark the start position, take the cursor

to the end position, and say 'Cut'.

->Let me elaborate. Let us say you want to cut this line upto<- here.

a) First, place the cursor at the 'L', and press C-[SPACEBAR].

 This sets the starting position. You must see a message called 'mark

 set' at the bottom of the screen.

b) Now go to the 'o' of 'upto' using the arrow keys, and press C-w.

 The selected region is cut to clipboard. Note that emacs doesn't

 highlight the selected region.

If this seems a bit of too much, you can cut lines as in vi. Press C-k

to 'kill' a line. Keep pressing it if you want to cut more lines.

Instead, let's say you just want to copy the same text. There is a

round-about way of doing this. First cut the lines as above, then paste

the clipboard content back! The clipboard is not emptied unless you

make another marking, so you have copied something.

I haven't yet told you how to paste from clipboard in Emacs. It is

rather simple. Just press C-y.

SEARCHING IN emacs

==================

Emacs has a powerful search utility which starts finding matches even

as you are typing the term. To search for, say, 'hello', type:

C-s hello

This looks for 'hello' in the forward direction. If you do a reverse

search, type:

C-r hello

If you get the right match, press [ENTER] to start working from there.

Else, use C-s and C-r keys to continue searching, or C-g to abort.

NAVIGATING IN emacs

===================

You can use the ARROW-keys, PAGE-UP, PAGE-DOWN, HOME and END keys in

emacs. Note that HOME takes you to the start of file, not line; END

similarly takes you to the end of file. In addition,

* to go to the start of a line, press: C-a

* to go to the end of a line, press: C-e

* to go to a specific line, say line 95, type: M-x goto-line

 (Most of the times it is easier to use the page-movement keys and

 look at the line number that appears at the bottom.)

* to go to the next word, press: [META]-f (ALT-f, abbr. to M-f)

* to go to the previous word, press: M-b

* to go to the start of file, press: [HOME] or M-< (ALT-SHIFT-,)

* to go to the end of file, press: [END] or M-> (ALT-SHIFT-.)

In the end, here are a few tips and tricks for you the Emacs user:

* To undo last action: C-x u

* To repeat the next command <n> times: M-x <n>

* To make the lines in a paragraph have about the same length: M-q

 (The paragraph should be separated by a line space above and below.)

* To temporarily exit to the shell: C-x C-z

 (Type %em[ENTER] at the prompt to return to emacs.)

* Emacs has the tab-completion feature introduced with the bash shell.

(In fact, bash borrowed this from emacs.) You can use this feature to

reduce the amount of typing.

That finishes a basic working knowledge of the vi and emacs editors.

As already said, they are much more than what I have told you. You can

read their online documentation if you are curious to learn. There is

even an online tutorial for emacs (C-h t).

Before I bid good-bye, I would like to remind you that any feedback is

most welcome, and would help improve the primer for future users. I

would also appreciate it if you could load Emacs, press C-h C-p, and

read what shows up on the screen.

Bored with tech stuff? Yawning? Get a psychotherapy from emacs.

Press M-x (ALT-x), type 'doctor', and hit [ENTER].

Happy Linuxing!

